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Abstract

Cough is a characteristic symptom of tuberculosis, is the main cause of transmission, and is

used to assess treatment response. We aimed to identify the best measure of cough severity

and characterize changes during initial tuberculosis therapy. We conducted a prospective

cohort of recently diagnosed ambulatory adult patients with pulmonary tuberculosis in two ter-

tiary hospitals in Lima, Peru. Pre-treatment and five times during the first two months of treat-

ment, a vibrometer was used to capture 4-hour recordings of involuntary cough. A total of 358

recordings from 69 participants were analyzed using a computer algorithm. Total time spent

coughing (seconds per hour) was a better predictor of microbiologic indicators of disease

severity and treatment response than the frequency of cough episodes or cough power.

Patients with prior tuberculosis tended to cough more than patients without prior tuberculosis,

and patients with tuberculosis and diabetes coughed more than patients without diabetes co-

morbidity. Cough characteristics were similar regardless of HIV co-infection and for drug-sus-

ceptible versus drug-resistant tuberculosis. Tuberculosis treatment response may be meaning-

fully assessed by objectively monitoring the time spent coughing. This measure demonstrated

that cough was increased in patients with TB recurrence or co-morbid diabetes, but not

because of drug resistance or HIV co-infection.

Introduction

Cough is among the most characteristic symptoms of pulmonary tuberculosis. From the

patient perspective, cough is a driver of care-seeking [1], and may significantly impact quality
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of life [2], both physically and psychologically. Cough is also associated with fear of infection,

stigma, and the social isolation of patients with tuberculosis [3]. From the clinical perspective,

cough is critical both in diagnosis [4] and to monitor treatment response. Recently, it has been

shown that cough frequency is associated with sputum bacillary load [5], and with the extent

of cavitary lung disease [6]. Cough is also uniquely relevant for the transmission of tuberculosis

[7]. For instance, it has been suggested that bouts of acute cough associated with common

respiratory pathogens may drive transmission from otherwise subclinical tuberculosis disease

[8]. Cough frequencies may also be associated with tuberculin conversion rates in patients’

household contacts [9].

Despite the major role that cough plays in tuberculosis transmission, clinical management,

and patient experience, relatively few studies have objectively described cough among patients

with tuberculosis, in part due to logistical challenges in measuring and characterizing cough.

Recently, we reported the development of an audio-based device [10–12] to measure cough

frequency among HIV-negative Peruvian patients with drug-susceptible tuberculosis disease

[5,6,13]. Although this device is non-invasive and capable of generating 24-hour cough record-

ings, the approach had some limitations. Thirty-seven percent of recordings were excluded for

technical reasons, primarily background noise [5]. In addition, because the detection of cough

was based on sound, varying levels of background noise make it more difficult to comparably

extract features of cough beyond frequency, such as cough intensity. Furthermore, the collec-

tion of audio data created a risk to patient privacy. Although the recording was mostly pro-

cessed algorithmically, human review of segments to confirm a computer-algorithm identified

potential cough was still required to ensure accuracy [14].

The present study describes the application of an adapted CayCaMo cough monitor using a

solid-state piezoelectric vibration-sensing device (vibrometer) to:

1. Describe features of cough severity among patients with tuberculosis pre-treatment and

describe cough treatment response.

2. Determine which feature is most predictive of objective microbiological measures of TB

severity before and during TB treatment.

3. As an exploratory analysis, to identify possible determinants of cough severity, including

HIV sero-status, diabetes co-infection, and tuberculosis drug resistance. Given that the

management of HIV co-infection and multi-drug resistance are two major current chal-

lenges to global tuberculosis control,[15] understanding the dynamics of cough among

these patient groups has important implications for transmission.

Materials and methods

Cough monitor description

Cough recordings were collected using a modified version of our existing cough recording

device (Fig 1) [16]. The modification consisted of replacing the internal electric microphone

by a solid-state piezoelectric speaker (SWT, Part No: 3B27+3.9EA, 27 mm diameter, resonance

frequency 3.9±0.5 KHz) that creates a variable electric charge based on vibration. The utility of

this device is that the response spectrum of the sensor is such that sounds with frequencies

beyond 4Khz are highly attenuated. As a result, the device is capable of recording cough

sounds with high accuracy, while the spoken word is unintelligible. Furthermore, because the

sensor is placed on the suprasternal notch of the patient and detects vibration, features of

cough such as cough intensity or duration can be detected with greater sensitivity than by
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audio alone. Our previously reported algorithm then used identify potential coughs based on

the sensor signal, with a sensitivity of 75.5% and a Birring specificity of 99.3% among adults.

[10,11]. These recordings were then reviewed by a human listener to further increase sensitiv-

ity [14]. In a set of test recordings in which induced cough and non-cough sounds (throat

clearing and spoken words) were captured by both audio and the vibration-based sensor,

there was perfect agreement between classification of sounds between the two methods. A

full description of this validation of the modified device will be reported elsewhere.

Study description

From June 2016 to March 2017, we prospectively followed a cohort of 71 ambulatory adult

(aged�18 years) patients with tuberculosis disease in two tertiary hospitals in the city of Lima,

Peru: Hospital Dos de Mayo (DM) and Hospital Cayetano Heredia (CH). The sample size was

determined based on a calculation to detect differences in the proportion of positive microbio-

logic results between patients with and without cough and the study was not designed, a priori,
to detect differences in cough between patients based on HIV co-infection or drug resistant

tuberculosis.

Newly identified adult (at least 18 years old) patients diagnosed by the Peruvian health care

system by the presence of at least once acid-fast bacilli positive sputum smear microscopy test

were eligible to participate in the study (henceforth referred to as smear). At enrollment,

patients were assisted to complete a questionnaire detailing prior history of tuberculosis, the

presence of co-morbidities, and socio-economic position. The latter was characterized using

the progress out of poverty index (PPI), a non-income-based wealth index developed for Peru

[17,18]. Values for the PPI range from 0–100.

Six cough recordings were made for each patient during the first 60 days of treatment. The

first of these was done, when possible, on day 0 (the day of diagnosis) and additional visits were

scheduled after 3, 7, 14, 30, and 60 days of treatment. Based on previous findings that a 4-hour

cough recording accurately approximated cough frequency over 24-hours [5], recordings were

4 hours in duration. Based on prior evidence that the frequency of cough varied throughout the

day, peaking from 1–2 pm [5], whenever possible recordings were scheduled then.

Smear tests were performed by the Peruvian health system, and additional smear and micro-

scopic-observation drug susceptibility (MODS) tests incorporating drug-susceptibility testing

for isoniazid and rifampicin [19–21] were performed by the study team. All results were com-

municated promptly to the participant’s medical team. Patients underwent treatment

Fig 1. Piezoelectric sensor. Shown here is the vibrometer, as it would be worn by a participant.

https://doi.org/10.1371/journal.pone.0231167.g001
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according to the current Peruvian national guidelines [22], using direct observation of every

treatment dose and this study had no role in patient care or treatment.

The study was approved in Peru by the institutional review boards of the Universidad Per-

uana Cayetano Heredia, the Asociación Benéfica PRISMA, and both participating Peruvian

hospitals. In the USA, it was reviewed by the Johns Hopkins School of Public Health and the

Tulane University School of Public Health and Tropical Medicine through an inter-institu-

tional authorization agreement.

Cough quantification

Cough events were summarized as in our previous studies into ‘episodes’ (also termed ‘cough-

ing fits’ or ‘epochs’) defined as any series of coughs separated by <2 seconds between each

cough. For each episode, we calculated duration, peak energy or amplitude, and power (spec-

tral power summed over the duration of the episode) using spatial analysis (Fig 2). These fea-

tures were summarized across all episodes detected over the 4-hour recording in two ways.

First, the per-episode geometric mean, indicators of the strength of the typical cough episode,

were calculated as the average episode: DURATION; AMPLITUDE; and POWER. Addition-

ally, the hourly sum of episodes’ total: TIME; and POWER together with the COUGH EPI-

SODE FREQUENCY per hour were calculated. Thus, our parameters were:

1. AVERAGE EPISODE DURATION (seconds)

2. AVERAGE EPISODE PEAK AMPLITUDE (seconds)

3. AVERAGE EPISODE POWER (milliwatts)

4. TOTAL TIME COUGHING per hour (seconds per hour)

5. TOTAL POWER EXPENDED COUGHING (milliwatts per hour)

6. COUGH EPISODE FREQUENCY (episodes per hour)

Statistical methods

To describe cough severity, we calculated Spearman correlations to examine the relationship

between features. Interclass correlation coefficients were estimated to determine the degree to

which variability between features was explained by within-participant versus between-

Fig 2. Cough signal. Shown here are two individual coughs. Because these coughs took place less than two seconds apart, they would be classified as part of

a single episode, with a total duration of 1.00 second. The episode PEAK is the maximum amplitude over the episode (max(abs(signal)), and the episode

POWER is the rms(signal)^2.

https://doi.org/10.1371/journal.pone.0231167.g002
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participant variability. To characterize cough response to treatment, we visualized the dynam-

ics of each cough feature over time. As previously, we defined any cough frequency of 0.7 con-

firmed cough events per hour or fewer as normal for a healthy adult [5,23,24].

To determine which feature of cough best predicted objective microbiological measures of

tuberculosis severity, we developed bivariable models to examine the relationship between

each feature and microbiologic results from its paired sputum sample. We treated time to

MODS positivity (TTP) as our primary outcome of interest, and, secondarily, considered out-

comes of MODS positivity and sputum smear positivity (including paucibacillary results). We

compared the fit of these models by their log-likelihood and by Akaike’s Information criterion

(AIC), a penalized-likelihood criteria for comparing non-nested models [25]. Using the same

methodology and among the subset of participants with completed pre-treatment and 3-day

recordings, we examined the relationship between the percent change in each feature from day

0 to day 3 and outcomes of MODS positivity and TTP. To identify the optimal cutoff value for

cough features versus MODS positivity, we also ran models stratified by the day of treatment

and constructed ROC curves based on the model output.

To identify determinants of cough severity, we constructed bivariable and multivariable

models to examine whether features of cough episode severity varied by HIV serostatus, pres-

ence of mono or multidrug-resistant tuberculosis, or concurrent diabetes. We used Tobit

models to model the relationship between these clinical factors and AVERAGE EPISODE

DURATION and negative binomial models to model the relationship between these clinical

factors and EPISODE FREQUENCY. Tobit models yield unbiased estimates when the depen-

dent variable is censored [26], and were used here to account for recordings where no cough

was reported. The lower limit for censoring was taken as the lowest observed value of each

cough feature.

Because we wished to test the association between HIV status, drug resistant disease, and

cough, these variables were retained in final multivariable models regardless of statistical sig-

nificance. Other potentially confounding variables were included in the multivariable model

based on comparisons of Akaike’s criterion for final variable selection. To ensure that associa-

tions between HIV, drug-resistant tuberculosis, and cough were not confounded by prior

tuberculosis or treatment, models were also run where all participants with prior tuberculosis

were excluded, and for patients on first-line treatment only, as a sensitivity analysis. We con-

sidered adjusting for the following: day of treatment, patient age, sex, HIV status, diagnosis of

diabetes, history of smoking, and history of prior tuberculosis, the patient’s microbiological

result (MODS positive or negative) at the same visit, and whether the patient’s tuberculosis

was drug resistant or not.

All analyses were completed in MATLAB (The MathWorks, Massachusetts, USA) or using

STATA statistical software version 15.1 (StataCorp LP, College Station, Texas, USA).

Results

Participant characteristics

Seventy-one patients were enrolled. Sixty-nine provided at least one successful recording and

were considered ‘analyzable’ cases. A total of 363 recordings were collected, of which one was

unusable. 43 participants had complete data (6 recordings), 15 had 5 complete recordings, and

11 had 4 or fewer completed recordings. Among completed recordings, 358 were paired with a

MODS test result from the same visit (S1 Fig). Characteristics of the analyzable cases are

shown in Table 1. All participants living with HIV had been previously diagnosed and were

receiving antiretroviral therapy; no additional HIV-associated comorbidities, such as Pneumo-
cystis carenii pneumonia, were documented. Fifty-two recordings were available from patients
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who had not yet started therapy (i.e. on their day of diagnosis). The final study sample includes

69 patients with at least one paired cough recording and microbiological result., 6 of whom

had diabetes co-morbidity and 7 of whom had previous TB disease.

By treatment day 14, 1 patient had confirmed drug-resistant tuberculosis and had been

changed to second-line therapy, while 7 patients with drug-resistant disease that was later

confirmed, were still on first-line therapy. By day 14, 48% of patients had clinically normal

cough rates. This was similar for patients with drug-sensitive (46%) and drug-resistant dis-

ease (63%).

Features of cough pre-treatment and cough treatment response

EPISODE FREQUENCY was correlated with TOTAL TIME COUGHING and TOTAL

POWER EXPENDED COUGHING (rho = 0.96, p<0.001 and rho = 0.67, p<0.001), and was

not associated with AVERAGE EPISODE DURATION, PEAK AMPLITUDE, or POWER.

AVERAGE EPISODE PEAK AMPLITUDE and POWER were strongly (rho>0.6) correlated

with each other (S1 Table). Ten percent to 29% of the variability in each cough episode feature

was explained by within-individual variability (S2 Table).

One hundred and fourteen recordings (32%) had no coughs recorded over the 4-hour

period. Of the 52 patients with pre-treatment cough recordings, 11 patients (21%) had a

pre-treatment recording with a cough frequency similar to that of a healthy adult (< = 0.7

cough events/hour), and 9 (17%) did not cough during their 4-hour pre-treatment record-

ing. All features were right-skewed, such that many participants had relatively mild cough

(low frequency and short duration) and a small proportion had substantially more severe

cough. At baseline, patients at the 75th percentile had an EPISODE FREQUENCY 9.4 epi-

sodes per hour, equivalent to 11 times that of patients at the 25th percentile (0.89 episodes

per hour); a TOTAL TIME COUGHING of 12 seconds per hour (22 times more than

patients at the 25th percentile, who coughed 0.56 seconds per hour), and a TOTAL POWER

EXPENDED 48 times greater than patients at the 25th percentile (0.60 versus 0.013 milli-

watts per hour). EPISODE FREQUENCY, TOTAL TIME COUGHING, and TOTAL

POWER EXPENDED each decreased with treatment, as did AVERAGE EPISODE DURA-

TION. In contrast, AVERAGE EPISODE PEAK AMPLITUDE and POWER remained

approximately stable over time (S2 Fig).

Table 1. Participant characteristics.

Characteristic (N = 69) Percent / Mean (SD)

Percent Male 41 59%

Progress out of Poverty Index (PPI) n/a 58 (12)

Drug sensitive 59 86%

Rifampicin-resistance only 0 0%

Isoniazid resistance only 2 3%

Multi-drug resistance 8 12%

HIV positive 8 12%

HIV positive and drug resistant TB 1 2%

Diabetes 6 9%

Prior diagnosis of TB 7 10%

Prior diagnosis of TB and drug resistance 3 4%

Smoker 13 19%

https://doi.org/10.1371/journal.pone.0231167.t001
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Association with objective microbiological measures of tuberculosis

severity

EPISODE FREQUENCY, TOTAL TIME COUGHING, and AVERAGE EPISODE DURA-

TION were statistically significantly associated with TTP, as well as MODS positivity.

EPISODE FREQUENCY, TOTAL TIME COUGHING, TOTAL POWER EXPENDED

COUGHING, and AVERAGE EPISODE DURATION were each statistically significantly

associated with smear positivity. AVERAGE EPISODE PEAK AMPLITUDE and POWER

were not associated with microbiologic results. Based on model fit, TOTAL TIME COUGH-

ING was the strongest predictor of TTP (AIC = 1197), followed by COUGH EPISODE FRE-

QUENCY (AIC = 1200) and AVERAGE EPISODE DURATION (AIC = 1205). TOTAL TIME

COUGHING was also the best predictor of MODS positivity and smear positivity (S3 Table).

Decreases in Akaike information criterion of four or greater have been described as “signifi-

cant” [27]; using this guideline TOTAL TIME COUGHING was the best cough measure com-

pared to EPISODE FREQUENCY. There was no evidence that early changes in any cough

feature (% change from day 0 to day 3) were associated with smear, MODS, or TTP results

(model results not shown). In stratified models, TOTAL TIME COUGHING was predictive of

MODS positivity on day 0 of treatment (AUC = 0.73, 95% CI: 0.42, 01.00, S3 Fig). However,

stratified analyses at other time points (day 3 to 60) suggested that features of cough were not

predictive of MODS positivity (results not shown), rather, only in combined analyses (all treat-

ment days combined) were features of cough significantly associated with MODS results.

Determinants of cough severity

Because TOTAL TIME COUGHING was the strongest predictor of TTP, this feature was car-

ried forward to examine determinants of cough severity. Secondarily, because we have previ-

ously reported on the association between COUGH EPISODE FREQUENCY and patient

characteristics in a separate cohort of HIV-negative Peruvian patients with drug-sensitive

tuberculosis [5,6,13], bivariable and multivariable incidence rate ratios comparing COUGH

EPISODE FREQUENCY based on clinical characteristics from treatment day 0 to 60 (n = 357)

are also reported.

TOTAL TIME COUGHING was significantly positively associated with: diabetes (β = 0.86,

95% CI: 0.09, 1.63, p = 0.028); history of prior tuberculosis (β = 1.44, 95% CI: 0.66, 2.22,

p<0.001) but not HIV status nor drug resistant tuberculosis. Smokers with TB also tended to

cough more than non-smokers with TB, although this was not statistically significant. COUGH

EPISODE FREQUENCY was significantly associated with the same factors (Table 2 and Fig 3).

Discussion

Using our new device, we document spontaneous cough frequency and severity. Our results

corroborate previous findings that cough frequency is associated with positive sputum culture

for M. tuberculosis [5,9]. We further find that the average duration of cough episodes was asso-

ciated with microbiologic positivity, and that the hourly cough duration (a feature that com-

bines cough episode frequency and per-episode duration) is more predictive of MODS TTP

than either feature individually. In contrast, the average peak and power of cough episodes

were not related to microbiology and did not change over time.

Cough intensity can be measured via audio [28], however, this approach has limited feasi-

bility in real-world, out-patient scenarios. A vibrometer-based approach surmounts these

obstacles and allows additional features like cough episode peak and power to be reliably
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captured. It has recently been shown that, for voluntary cough, sound power and sound energy

correspond to patient self-reported cough strength as well as cough flow and pressure [28].

As in our previous study, we found significant heterogeneity in cough between participants,

both pre-treatment and during treatment. This may limit the utility of objective cough moni-

toring as a clinical tool. Although individuals with greater cough were, on average, more likely

to be MODS positive, there was not a sensitive and specific threshold for cough frequency that

consistently predicted a positive sputum culture. Our results also demonstrate that a propor-

tion of patients with pulmonary tuberculosis have low cough frequencies, and brief cough

duration, even prior to treatment [5]. Better understanding the factors that drive some individ-

uals to cough much more often, and more severely, than others, may be useful to better under-

standing tuberculosis transmission dynamics. We also found no evidence that early changes in

cough dynamics, such as decreases in episode frequency, duration, or power after 3 days of

treatment, are associated with longer-term microbiological positivity.

Table 2. Determinants of cough severity.

Ln (TOTAL TIME COUGHING) EPISODE FREQUENCY

Bivariable Multivariable Bivariable Multivariable

Beta Coefficient (95% Confidence

Interval)

Beta Coefficient (95% Confidence

Interval)

Rate Ratio (95% Confidence

Interval)

Rate Ratio (95% Confidence

Interval)

(p-value) (p-value) (p-value) (p-value)

Treatment day -0.66 (-0.91, -0.40) -0.66 (-0.92, -0.41) 0.66 (0.52, 0.84) 0.61 (0.46, 0.79)

(p<0.001) (p<0.001) (p = 0.001) (p<0.001)

Treatment day

^2

0.06 (0.02, 0.10) 0.06 (0.02, 0.10) 1.03 (1.00, 1.06) 1.04 (1.00, 1.07)

(p = 0.002) (p = 0.001) (p = 0.063) (p = 0.028)

Age� 0.11 (-0.26, 0.47) n/a 0.98 (0.82, 1.16) n/a

(p = 0.575) (p = 0.785)

Sex = Female -0.05 (-0.59, 0.49) n/a 1.05 (0.63, 1.75) n/a

(p = 0.843) (p = 0.846)

Smoker 0.98 (-0.21, 2.17) 0.59 (-0.06, 1.25) 2.01 (1.34, 3.01) 1.82 (0.90, 3.73)

(p = 0.108) (p = 0.077) (p = 0.001) (p = 0.094)

MODS positive 0.71 (0.31, 1.10) n/a 1.73 (1.14, 2.63) n/a

(p<0.001) (p = 0.010)

Prior TB 1.04 (0.27, 1.82) 1.44 (0.66, 2.22) 2.66 (1.51, 4.66) 4.03 (2.19, 7.42)

(p = 0.009) (p<0.001) (p = 0.001) (p<0.001)

Diabetes 0.59 (-0.24, 1.43) 0.86 (0.09, 1.63) 1.38 (0.81, 2.37) 1.75 (1.13, 2.71)

(p = 0.164) (p = 0.028) (p = 0.240) (p = 0.012)

HIV positive 0.03 (-0.83, 0.88) 0.56 (-0.21, 1.34) 0.73 (0.40, 1.33) 1.40 (0.71, 2.78)

(p = 0.952) (p = 0.150) (p = 0.305) (p = 0.366)

Drug resistant

TB

-0.03 (-0.83, 0.77) -0.35 (-1.09, 0.39) 1.33 (0.45, 2.77) 0.73 (0.37, 1.45)

(p = 0.942) (p = 0.351) (p = 0.784) (p = 0.366)

Shown here are the results of bivariable and multivariable Tobit regression models in which the outcome of interest is the log-transformed TOTAL TIME COUGHING

(log seconds per hour). The lowest observed value was taken as the lower limit of the model. This approach allows recordings where no cough episodes were observed to

be included in the analysis. To model COUGH EPISODE FREQUENCY, bivariable and multivariable negative binomial regression models were constructed. Both

models included a random intercept to account for the correlation between recordings from the same study participant. Microbiology (MODS result) was collinear with

treatment day (the relationship between characteristics of cough and treatment day is explained by microbiological response), therefore the final multivariable includes

treatment day and not MODS result. Treatment day was adjusted for in the model using a quadratic term (treatment day ^2) to reflect the non-linear, rapid decrease in

cough observed early in treatment [5].

�Age per 10 years, centered at 34 years.

(Total participants = 69, total recordings = 359)

https://doi.org/10.1371/journal.pone.0231167.t002
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Fig 3. Total time spent coughing by prior tuberculosis diagnosis and diabetes co-morbidity. Shown here are stacked bar graphs showing the proportion of

individuals in each group with extremely elevated (x10 greater than normal), elevated (greater than normal), or normal (< = 0.6 coughs/hour) cough as of a given study

visit. Individuals with prior TB and individuals with diabetes co-infection were more likely to have extremely elevated or elevated cough at later study visits.

https://doi.org/10.1371/journal.pone.0231167.g003
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Voluntary cough power may differ by gender, height, and lung function and there is a need

to better understand how other factors, such as ethnicity and smoking status affect cough

frequency and intensity [28]. Given the small number of participants living with HIV, with

diabetes co-infection, with a drug resistant infection, or presenting with other risk factors, the

results we present here should be regarded as exploratory. We found that smoking status was

associated with time spent coughing, a finding also supported by other studies [9]. COPD is a

common occurrence in smokers, and while COPD was not noted in the clinical records of any

patient, it is possible that this was an unmeasured, confounding variable. Patients with prior

tuberculosis also coughed more. This may be due to more extensive lung damage in these

patients [6]. or physiological alterations of the lung that did not fully recover to normality.

Finally, we found that patients with concurrent diabetes coughed more than their non-diabetic

counterparts, which is consistent with recent reports of more severe tuberculosis disease in

patients with diabetes [29]. Future studies with larger samples of patients with diabetes would

be useful to confirm these preliminary observations.

We found no evidence of association between HIV coinfection, or drug resistant tuberculosis

and cough. In theory, patients with HIV might be expected to have milder cough due to sup-

pressed inflammatory responses, but our data did not support this. Patients with drug-resistant

tuberculosis began with cough rates like those of patients with drug-sensitive tuberculosis, and,

by day 14 of treatment, a similar proportion had achieved clinically normal cough, although

most (7/8) were still on first-line treatment. This is likely explained by most MDR-tuberculosis

strains being susceptible to at least one of the first-line drugs administered empirically. There-

fore, the utility of cough monitoring for the early prediction of treatment failure may be limited.

No cough was detected in a third of recordings. This creates considerations for analysis that

are similar to those observed in biomarker data, where lower limits of detection can result in

left-censored data [30]. In this study, we used Tobit regression models to account for this in

instances where cough features were the independent variable of interest, and limited analyses

where cough features were the dependent variables of interest to complete-case analysis.

Our vibration-based method of cough recording has benefits over previous audio- based

methods [5,13]. Privacy for the patient is improved, as the device accurately detects vibrations

in the frequency produced by cough, but not in the frequency produced by human speech.

The device is unobtrusive and can easily be hidden with clothing without interfering with the

signal quality. Finally, because the vibrometer is not influenced by ambient noise, cough inten-

sity can be more reliably estimated and compared.

Conclusions

Total hourly cough duration (seconds spent coughing per hour) was a better predictor of the

microbiologic response to treatment than episode frequency and patients with prior tuberculosis

had higher cough rates that patients without prior tuberculosis. Better understanding cough

dynamics across populations and sub-groups may inform our understanding of TB transmission.

Supporting information

S1 Fig. Study flow chart. Shown here are the total number of cough recordings and microbio-

logic testing completed over the course of the study. 357 cough recordings (from 69 study par-

ticipants) were matched to a microbiology result.

(TIF)

S2 Fig. Features of cough by treatment day. Shown here are the percentages of study partici-

pants with an elevated cough rate, and the geometric means of other characteristics of cough
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episodes, on specific days of treatment. By day 14 of treatment, 48% of patients had clinically

normal cough rates. Recordings were taken as having occurred sufficiently near to the target

day if they occurred strictly prior to the start or treatment, or on the first day of treatment (tar-

get day 0), or within +/-2 days (target day 3 and 7), +/- 7 days (target day 14), or +/-20 days

(target days 30 and 60) of the target date.

(TIF)

S3 Fig. ROC curve. Shown here are receiver-operator curves (ROC) for MODS positivity versus

TOTAL TIME COUGHING in 52 pre-treatment recordings (47 MODS positive and 5 MODS

negative). AUC = 0.73; Best cut-off = 1.9 episodes/hour; Sensitivity = 85%; Specificity = 50%.

(TIF)

S1 Table. Spearman correlation between cough features. Shown here is a heat map repre-

senting non-parametric correlation coefficients between cough features, based on 43 of 52 pre-

treatment cough recordings where at least one cough was recorded during the 4-hour record-

ing. Results on treatment days 3–60 are similar (not shown).

(DOCX)

S2 Table. Intraclass correlation coefficients. Shown here are intraclass correlation coeffi-

cients for each cough feature, describing the proportion of variability in each feature explained

by within-individual variability. For example, 29% of the variability in COUGH EPISODE

FREQUENCY can be explained by within-individual variability.

(DOCX)

S3 Table. a-c. Association Between Cough Features and Microbiological Outcomes. These

tables examine the extent to which specific features were predictive of microbiological out-

comes. The primary microbiological outcome of interest was MODS time to positivity

(TTP). Secondarily, we also considered the microbiological outcomes of MODS positivity

(+/-) and smear positivity (+/-). All cough features are log-transformed (natural log AVER-

AGE EPISODE DURATION, natural log AVERAGE EPISODE PEAK AMPLITUDE, etc.).

All models are bivariable models, unadjusted for treatment day or other factors, as it is

expected that the relationship between characteristics of cough and treatment day was

explained by microbiological response. All models include only recordings with at least one

recorded cough episode included (complete case analysis). TTP models were Tobit models

to account for the structure of the TTP data (TTP results 0 and 21 are treated as continuous,

and TTP results of 22 or greater (equivalent to a negative MODS culture) are right-censored.

MODS (+/-) and smear models were logistic models. All models included a random effect to

account for within-patient variability. Log-likelihood (LL) and Akaike’s information crite-

rion (AIC) were compared between models with each feature as the independent variable,

where the model with the lowest AIC suggests that this feature is the strongest individual

predictor of smear positivity.

(DOCX)
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