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Abstract

Background: Because of the high global prevalence of latent TB infection (LTBI), a key challenge in endemic settings is
distinguishing patients with active TB from patients with overlapping clinical symptoms without active TB but with co-
existing LTBI. Current methods are insufficiently accurate. Plasma proteomic fingerprinting can resolve this difficulty by
providing a molecular snapshot defining disease state that can be used to develop point-of-care diagnostics.

Methods: Plasma and clinical data were obtained prospectively from patients attending community TB clinics in Peru and
from household contacts. Plasma was subjected to high-throughput proteomic profiling by mass spectrometry. Statistical
pattern recognition methods were used to define mass spectral patterns that distinguished patients with active TB from
symptomatic controls with or without LTBI.

Results: 156 patients with active TB and 110 symptomatic controls (patients with respiratory symptoms without active TB)
were investigated. Active TB patients were distinguishable from undifferentiated symptomatic controls with accuracy of
87% (sensitivity 84%, specificity 90%), from symptomatic controls with LTBI (accuracy of 87%, sensitivity 89%, specificity
82%) and from symptomatic controls without LTBI (accuracy 90%, sensitivity 90%, specificity 92%).

Conclusions: We show that active TB can be distinguished accurately from LTBI in symptomatic clinic attenders using
a plasma proteomic fingerprint. Translation of biomarkers derived from this study into a robust and affordable point-of-care
format will have significant implications for recognition and control of active TB in high prevalence settings.
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Introduction

Tuberculosis is the leading bacterial cause of death worldwide,

with an estimated 8.8 million new cases of active disease and 1.6

million deaths per year [1]. Much of the burden of disease lies in the

developing world, where annual incidence can reach 700 per

100,000 in certain regions [1].Newandunrecognised cases drive the

epidemic, with transmission usually occurring before the index case

is diagnosed. Multi-drug resistant cases and HIV co-infection

further complicate control efforts [2]. Pulmonary TB is the most

frequent clinical and transmissible manifestation of active disease.

Rapid diagnosis and treatment are critical in the prevention of

transmission.

The global burden of active TB occurs on a background of

quiescent or latent TB infection (LTBI), affecting one third of the

world’s population and a higher proportion of the population of

TB-endemic areas [3]. Respiratory and constitutional symptoms

overlapping with those of pulmonary TB are very common in

communities where TB is endemic [4]. In this scenario the

challenge is to distinguish symptomatic patients with active TB

from those with latent disease but whose presenting symptomatol-

ogy is attributable to some other infectious or inflammatory

process. In terms of rapid diagnosis, sputum microscopy will only

identify approximately 50% of patients with active pulmonary TB.

Conversely, while the interferon gamma release assays (IGRAs)

represent a major advance in the detection of latent TB, they

cannot distinguish active TB from symptomatic patients with

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e38080



latent infection in this context [5,6]. This overlap between LTBI,

active TB and non-specific clinical manifestations presents

a formidable obstacle to the rapid recognition of active TB and

the timely and appropriate targeting of anti-TB chemotherapy or

chemoprophylaxis. In practice this difficulty may give rise to 2

types of therapeutic error. In the first instance, erroneous diagnosis

of active TB in a symptomatic patient with LTBI may result in

inappropriate administration of full course TB treatment. Con-

versely, offering chemoprophylaxis to a patient with supposed

LTBI in whom active TB has not been recognized, will drive

emergence of drug resistance.

Pulmonary TB is characterised by granuloma formation,

caseation and ultimately cavitation, reflecting a complex interplay

between distinctive components of the innate and acquired

immune response and the pathogen [5]. Traditional serological

analysis of single circulating proteins is notoriously unreliable for

TB diagnosis [7]. In contrast, patterns of circulating proteins could

provide an accessible readout of pathophysiological status.

Discovery of such discriminatory biomarkers could open the way

for the development of new point-of-care tests based on a lateral

flow format such as dipsticks.

Proteomic analysis using Surface Enhanced Laser Desorption

Ionisation Time of Flight (SELDI-ToF) mass spectrometry is a high

throughput profiling methodology, which enables rapid compar-

ison of protein patterns from large numbers of patients. The

conceptual approach employed in the present study is termed

proteomic fingerprinting. It is based on the principle that

distinctive combinations of circulating proteins characterize

different disease states. This strategy has been applied to the

discovery of discriminatory proteomic patterns for a range of

diseases including cancer [8], vascular disease [9–11] and

infectious diseases [12–15]. Previously, we have demonstrated

that proteomic patterns based on such profiles can distinguish

active TB from healthy and symptomatic controls [12].

In the present study we hypothesized that plasma proteomic

differences would also distinguish patients with active TB from

those without active TB but with overlapping clinical symptoms,

irrespective of the co-existence of LTBI. Here we show that using

this approach, we can indeed discriminate accurately between

such patient groups.

Methods

Ethics Statement
All participants gave written informed consent and the research

was approved by internationally accredited ethics committees

including Universidad Peruana Cayetano Heredia (Lima, Peru)

and Imperial College London (London, United Kingdom). The

study involved adults from 15 years of age. Informed consent was

obtained from the next of kin, carers or guardians on the behalf of

the young adults involved in the study.

Study Participants
Participants were recruited over a period of two years from

adults over the age of 15 years attending 16 community TB clinics

serving a population of ,400,000 in the shantytown of Ventanilla

Figure 1. Patient recruitment. The figure illustrates the definitions of the patient subgroups and the routes by which they were recruited into the
study.
doi:10.1371/journal.pone.0038080.g001
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on the outskirts of Lima, Peru (Figure 1). All patients underwent

the local standardized clinical workup for TB. This included up to

4 consecutive sputum samples for microscopy and culture.

Participation in the study did not change patients’ routine clinical

management. The local incidence of TB in this population is

,130 per 100,000/year [16] and 95–97% of TB cases are HIV

negative [17]. We recruited patients with active TB and

individuals, termed symptomatic controls, presenting with re-

spiratory symptoms suspicious of TB in whom TB was sub-

sequently excluded.

Definition of Active TB, Latent TB and Symptomatic
Controls
Active TB cases were recruited on the basis of positive sputum

microscopy with subsequent confirmation by culture. Mycobacte-

rial culture was by automated liquid culture (BACTEC MGIT

960TM, BD) as well as the Microscopic Observation Drug

Susceptibility (MODS) assay which we have previously established

as a standard local laboratory protocol [18] and which has since

been adopted as the standard operating procedure by the national

TB programme in Peru. Symptomatic controls, those patients with

respiratory symptoms without active TB, were recruited if they

had a persistent cough and one or more of the following clinical

features: fever, weight loss, decreased appetite or haemoptysis.

Symptomatic controls had 1–4 sputum smears and cultures to

exclude active TB and were followed for 6 months to confirm that

cultures had not become positive or were re-classified accordingly.

Additional TB cases and symptomatic controls were identified

through tracing household contacts, from whom sputum smears

and cultures were obtained if symptomatic.

An IFN-c Release Assay (IGRA) (QuantiFERON-TB Gold In-

TubeH) was performed on all participants. Latent TB was defined

as a positive QuantiFERONH assay in the absence of clinical or

microbiological evidence for active TB.

The Tuberculin Skin Test (TST) has limited value in the

diagnosis of active TB and it was not carried out in our active TB

patient group. We carried TST in the symptomatic controls

group.

Sample Collection
A 4 ml blood sample was obtained from each participant in an

EDTA blood collection tube for subsequent plasma separation.

Three additional aliquots were obtained at the same time for the

QuantiFERONH-TB Gold in tube assay. Plasma was obtained

before initiating TB treatment; otherwise plasma was taken within

1–2 days of treatment. Blood samples were transferred to the

central laboratory on ice. Plasma was separated (3500 rpm, 10

minutes), aliquoted and frozen at 270uC at 6 hours following

collection.

QuantiFERONH -TB Gold in Tube Assay

This was performed according the manufacturer’s instructions

(Cellestis Plc, Sydney, Australia).

Plasma Proteomic Profiling
Plasma was profiled using Surface Enhanced Laser Desorption/

Ionisation-Time Of Flight (SELDI-TOF) mass spectrometry. All

samples underwent a single freeze-thaw cycle prior to analysis.

Samples were coded, blinded and randomised before application

onto weak cation exchange (CM10) ProteinChipH arrays (Bio-

Rad) in duplicate, as previously described [12]. Each ProteinCh-

ipH included 1 quality control standard derived from a single

healthy individual, placed at random. Liquid handling steps were

automated using a Biomek 3000 Laboratory Automation Work-

station (Beckman Coulter) and a 96 well BioprocessorH (Bio-Rad).

Mass spectra were generated on an automated System 4000

Bio-Rad ProteinChipH reader. Mass spectra data were collected

and analysed using the ProteinChipH Data Manager Client 3.5

software (BioRad Inc.). Spectra were generated at both high

(3,000 nJ) and low (1,600 nJ) laser energies with mass focus set to

40,000 Da and 6,000 Da respectively. Spectra were normalised by

total ion current starting with a minimum mass/charge (m/z) of

2,500. Spectra with normalisation factor outside mean 62

standard deviations were removed. The remaining spectra were

re-normalised by total ion current. Spectral peaks corresponding

to mass/charge (m/z) clusters were detected and clustered using

the ProteinChipH Data Manager Client 3.5 software (BioRad Inc.)

by auto-detecting peaks to clusters in two steps. For the first step

a signal to noise ratio of 5 and valley depth of 3 were used, with

a minimum peak threshold of 20% of all spectra. For the second

step a signal to noise ratio of 3 and valley depth of 1 were chosen.

The cluster window was set at 1.0 peak width and expression

difference mapping performed over m/z range of 2,500 to

200,000.

Table 1. Characteristics of study patients.

Active TB Symptomatic Controls

Latent No Latent All

N (%) 151 53 (48) 44 (40) 110**

Age Years
Median (IQR)

28.5 (15.5) 37 (27.5) 29 (20.5) 32 (23)

Sex Ratio
Female:Male

68:83 34:19 30:14 73:37

Smear***

Positive 139 0 0 0

Negative 7 53 44 110**

Culture‘

Positive 139 0 0 0

Negative 8 53 44 110**

History BCG
vaccination (%)

121 (80) 44 (83) 39 (89) 94 (86)

Previous history
TB (%)

34 (22) 11 (21) 6 (14) 20 (18)

Tuberculin Skin
Test (%){

Positive * 33 (62) 13 (30) 46 (42)

Negative * 11 (21) 25 (57) 36 (33)

Cough.7 Days (%) 118 (78) 24 (45) 22 (50) 53 (48)

Haemoptysis (%) 72 (48) 15 (28) 11 (25) 28 (26)

Fever.7 Days (%) 40 (26) 4 (8) 1 (2) 6 (6)

BMI Mean (sd) 21.6 (3) 25 (4.8) 23.5 (4.3) 24.1 (4.7)

Night-sweats.
10 Days (%)

53 (35) 7 (13) 4 (9) 14 (13)

Weight-loss.
4 Weeks (%)

69 (46) 9 (17) 5 (11) 19 (17)

TST-Tuberculin Skin Test. BMI-Body Mass Index. *TST was not performed in
patients with active TB. **The QuantiferonGold test was indeterminate or
unavailable on 13 symptomatic control patients. ***Smear results from 5
patients were unavailable. ‘Culture results from 4 patients were unavailable.
{TST results were unavailable for 28 control patients.
doi:10.1371/journal.pone.0038080.t001
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Instrument calibration was performed using All-in-1 Peptide

and Protein calibrants (Bio-Rad). Reproducibility was determined

by measuring the inter-ProteinChipH coefficient of variation (CV)

for the quality control spectra, based on all peaks in the spectrum

with intensity .1 mA. Overall interchip CV for the quality control

sample was 20%, consistent with similar studies.

Plasma Anion Exchange Fractionation
Because highly abundant proteins/peptides suppress signal from

lower abundance analytes in complex mixtures such as crude

plasma, SELDI-ToF spectra were generated from both crude and

pre-fractionated plasma to determinewhether accessing the ‘deeper’

proteome yielded additional diagnostic information. Anion-ex-

Figure 2. Heat map of crude plasma spectral data from active TB and symptomatic controls. Each vertical line represents an active TB
patient or symptomatic control. Each horizontal line represents a protein with a particular molecular mass. Areas where a protein is present in high
abundance are seen in red and low abundance in green.
doi:10.1371/journal.pone.0038080.g002

Figure 3. Mass spectra comparing 11.5 kDa and 5.8 kDa peaks in active TB and symptomatic controls. Mass spectra from 5 kDa to
12 kDa of four active TB and four symptomatic controls individuals. Intensity in mA is plotted in y-axis.
doi:10.1371/journal.pone.0038080.g003
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change fractionation was carried out using the ProteinChipH Serum
Fractionation Kit (Bio-Rad) according to the manufacturer’s

instructions with a Biomek 3000 Laboratory Automation Worksta-

tion. Six fractions were obtained from each sample eluting at

pH 9.0, pH 7.0, pH 5.0, pH 4.0, pH 3.0 and organic phase.

Data Analysis
To visualize the covariance within the mass spectral profiles we

used Principal Component Analysis (PCA). PCA encapsulates the

covariance within a set of variables by extracting a ranked set of

independent factors or principal components. The first 3

components encompass a high proportion (,95%) of the

informational content of a multivariate dataset. We plotted each

patient with respect to the first 3 components, in 3-dimensional

space, color-coding according to patient group.

Although PCA is useful for visualizing data it cannot provide

a classification rule for discriminating between patient categories.

To find such discriminatory proteomic patterns, we adopted

a supervised learning approach in which patient categories are

used to train an algorithm to derive a classification rule. We used

a Support Vector Machine (SVM) method [19]. Briefly, we used

10-fold cross validation to select parameters for the SVM. For the

final model parameters, we selected those that gave the overall

highest accuracy across the whole 10 fold cross validation. We next

selected a subset of the most relevant mass clusters using the

Recursive Feature Elimination (RFE) algorithm [20] which ranks

variables based on their contribution to the classifier. To obtain

accuracy estimates for the classifier, we took 1000 random re-

samplings of the original data, using 90% for training and 10% for

testing. We selected as a final classifier the one that produced the

highest accuracy while requiring the smallest number of m/z

clusters. Results were expressed as sensitivity, specificity and

accuracy (proportion of correct classifications) and as Receiver

Operator Characteristic (ROC) curves. We assessed the different

performances of classifiers derived from crude and pre-fraction-

ated plasma by comparing mean values for sensitivity, specificity

and accuracy using unpaired 2-tailed t tests. Comparisons of

categorical data were by Fisher’s exact test.

Results

Characteristics of study patients
151 patients with active TB and 110 symptomatic controls were

recruited (Figure 1). Of patients with active TB, 139 were both

smear and culture positive, with the remainder either smear or

culture positive. 48% of symptomatic controls had LTBI on the

basis of a positive QuantiferonGold assay. Symptomatic controls

had clinical features overlapping those of active TB patients,

including cough, haemoptysis, fever, night sweats and weight loss,

although symptom duration was generally longer among TB

patients. Similar proportions of TB patients and symptomatic

controls reported a previous history of TB (22% vs. 18%). The

proportion reporting a history of TB was higher among controls

with LTBI than among those without but did not reach statistical

significance. Patients with active TB had lower BMIs at the time of

recruitment compared with symptomatic controls (21.6 vs.

24.1 p,0.001). As expected, a higher proportion of patients with

LTBI based on a positive IGRA had positive TSTs (.10 mm)

compared with those without LTBI (62% vs. 30%, p,0.001).

There was a higher proportion of female patients among the

symptomatic controls than among the TB group. The effects of

this potential bias are discussed below. Other key clinical features

of the participant groups are given in Table 1.

Discrimination of Active from Latent Tuberculosis in
Symptomatic Patients
We plotted crude plasma global protein expression profiles in

a heat map (Figure 2) that shows spectra patterns from active TB

patients and unhealthy controls. The most striking area of up-

regulation in TB patients is seen in the 11 kDa region where

a series of protein peaks are seen in red amongst TB patients

(Figure 2). A parallel area of up-regulation is seen at 5 kDa and

a third smaller area seen at the 21 kDa region (Figure 2).

Inspecting in more detail the spectra in the 5.8 and 11.5 kDa

regions (Figure 3) reveals a complex of peaks at both these regions,

which is more abundant in patients with active TB.

Figure 4. Clustering of patients with active TB and symptomatic controls with or without latent TB using principal component
analysis. a. Crude plasma spectra; b. Fractionated plasma spectra. Each sphere represents an individual patient spectrum plotted in 3D space
defined by the first three principal components. Purple = active TB; Blue = symptomatic controls with latent TB; Green= symptomatic controls without
latent TB.
doi:10.1371/journal.pone.0038080.g004
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We assessed overall separability of patient groups by PCA of

mass spectra from crude and pre-fractionated plasma (Figure 4 a–

b). In figure 4, each patient sample is plotted in a 3-dimensional

space defined by the first 3 principal components. The spectra

from patients with active TB (purple spheres) cluster relatively

tightly together and are well separated from symptomatic control

patients (blue and green spheres) regardless of LTBI. This analysis,

however, does not clearly separate symptomatic controls with or

without LTBI (blue and green spheres, respectively).

The SVM classifiers distinguished active TB from both classes

of symptomatic controls. The ROC curves in Figure 5 (a–f)

summarize the performance of the classifiers, in terms of the trade-

off between sensitivity and specificity, for each of the different

comparisons. In each case, the area under the curve (AUC)

exceeded 0.9, irrespective of whether crude or pre-fractionated

plasma was analyzed, indicating a high level of discrimination.

Tables 2 and 3 and Tables S1 and S2 summarize the performance

of the classifiers in discriminating active from latent tuberculosis in

symptomatic patients using the number of selected relevant m/z

clusters (Table 3 in brackets). It was possible to distinguish patients

with active TB from undifferentiated symptomatic controls with

partially overlapping respiratory and constitutional symptoms with

an overall accuracy of 85% using crude spectra with 98 relevant

m/z clusters (Table 2, Table 3, Figure 5a). A higher specificity for

active TB (90% vs. 84%, p,0.001) was achieved using pre-

fractionated plasma with a total of 54 relevant m/z clusters

(Table 2, Table 3, Figure 5b). Notably, these levels of discrimi-

nation were achieved despite nearly half of the symptomatic

controls having LTBI (Table 1).

To further investigate the influence of background LTBI on

classifier performance, separate comparisons were made between

active TB and symptomatic controls either with or without LTBI.

In both comparisons, active TB could be distinguished from

symptomatic controls with overall classifier accuracies of at least

87% (Table 2, Table 3, Figure 5 c–f, Tables S1 and 2). Active TB

was readily distinguishable from symptomatic controls without

LTBI using both crude and fractionated plasma, with overall

accuracies, sensitivities and specificities of at least 90% (Table 2,

Table 3, Figure 5 e,f and Table S1 and S2). The main influence of

LTBI among the symptomatic controls was to reduce classifier

specificity, reflected in a higher proportion of false positives.

Strikingly, plasma pre-fractionation improved specificity from

75% to 82% only using four m/z clusters (Table 2, Table 3,

Figure 5 c,d, p,0.001).

To address the issue of the gender bias in cases and controls we

reanalysed the data to determine whether a classifier based on the

proteomic profile could reliably discriminate males from females.

This was found not to be the case, suggesting that gender is not

a major confounder in our analysis. As a further test, a new

classifier was trained on male patients alone, to discriminate active

TB from symptomatic controls. When we applied the trained

classifier to the female subjects, this classifier was nevertheless still

capable of classifying TB to an accuracy of approximately 80%.

We also confirmed the presence of differential expression of the

Serum Amyloid A (SAA, 11.5–11.8 kDa) and transthyretin (13.7–

13.8 kDa ) peak complexes which emerged in our previous study

[12] as important informative markers for active TB. SAA was

identified by specific immunodepletion (data not shown).

Discussion

In this study we have shown that a distinctive pattern of plasma

proteins distinguishes patients with active TB from non-TB

patients with overlapping clinical features, even in the presence

of LTBI. This both reinforces and substantially extends our

previous findings where we first showed that proteomic patterns

could be used as a diagnostic approach for active TB [12]. We

have now shown that the proteomic pattern does not merely

reflect the presence of TB infection per se. Rather, it can be used to

identify active TB even in a highly TB-endemic setting with high

prevalence of both respiratory symptoms and background LTBI.

Figure 5. Diagnostic performance of proteomic fingerprints. The diagnostic performance of classifiers based on proteomic fingerprints are
shown using Receiver Operator Characteristic Curves (ROC). (a,b) active TB vs. all symptomatic controls using crude or pre-fractionated plasma
respectively; (c,d) active TB vs. symptomatic controls with latent TB using crude or pre-fractionated plasma respectively; (e,f) active TB vs.
symptomatic controls without latent TB using crude or pre-fractionated plasma respectively. The ROCs are derived from 1000 random train/test re-
samplings of the data. Error bars show standard deviations. The Area Under the Curve (AUC) is shown in the centre of each plot.
doi:10.1371/journal.pone.0038080.g005

Table 2. Discrimination of active from latent tuberculosis in symptomatic patients.

Accuracy
(%6sd)

Sensitivity
(%6sd)

Specificity
(%6sd) AUC6sd

Crude Plasma: Clinical Group (N)

ActiveTB (151) vs. All Symptomatic Controls (110) 8567 8569 84610* 0.9160.06

ActiveTB (151) vs. Symptomatic LATENT Controls (53) 8867 9267 75619** 0.9160.08

ActiveTB (151) vs. Symptomatic NOLATENT Controls (44) 9565 9665 91614 0.9960.02

Pre-fractionated Plasma: Clinical Group (N)

ActiveTB (99) vs. All Symptomatic Controls (100) 8767 84612 90610* 0.9360.06

ActiveTB (99) vs. Symptomatic LATENT Controls (49) 8769 89610 82618** 0.9260.08

ActiveTB (90) vs. Symptomatic NOLATENT Controls (40) 9068 90610 92613 0.9560.06

The classifier performance is expressed as accuracy, sensitivity and specificity as percentages +/2standard deviations obtained by 1000 train/test randomizations of the
data. (AUC) = Area Under Curve in ROC analysis. *Pre-fractionated vs. Crude Plasma p,0.001. **Pre-fractionated vs. Crude Plasma p,0.001. For all other comparison
there are not significant differences between the performance of crude and pre-fractionated plasma.
doi:10.1371/journal.pone.0038080.t002
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The ability to discriminate rapidly in a symptomatic patient

between active TB and non-tuberculous disease has profound

implications for both individual clinical management and TB

control programs [21]. For example, current diagnostic limitations

frequently result in many patients in resource-poor settings being

treated empirically for community acquired pneumonia before

eventual diagnosis of active TB. This may lead to on-going

transmission during the interval preceding diagnosis as well as

greater individual morbidity. The alternative strategy of empirical

anti-TB chemotherapy is sometimes employed, but cost, toxicity

and logistics often preclude this. Adjuncts to conventional

microbiology for diagnosis of active TB in widespread use include

the TST and IGRAs. The use of TSTs in the diagnosis of active TB

in high prevalence settings is greatly limited by its poor specificity

for active TB as reactivity is also seen in LTBI, previous BCG

vaccination and exposure to environmental mycobacteria. Nor has

the recent introduction of IGRAs into clinical practice resolved this

key diagnostic issue. This is because of their inability to distinguish

active TB from LTBI [6] and frequent false negative results in

acute active TB [22], limitations which are especially problematic

in high prevalence settings [23]. Thus a diagnostic that overcomes

these limitations is urgently required and would be a major advance

in the management of the global TB pandemic. Recently it has

been reported that a TNF-alpha+ TB-specific CD4+response can

be used to differentiate latent infection from active TB but the

sensitivity was just 67% [24]. Moreover, that study relied on

polychromatic flow cytometry limiting the feasibility of being

translated in high prevalence settings. In contrast, our approach

provides improved accuracy, 87%, by detecting relevant protein

biomarkers in plasma. Despite the discovery-phase of our approach

using sophisticated proteomic methodologies, the identification of

relevant plasma proteins leads to a clear translational path for

antibody-based point-of-care devices that can be used to measure

these plasma proteins in the future.

There is increasing interest in the identification of novel

biomarkers for TB - in the contexts of diagnosis, treatment

response monitoring, prediction of relapse or re-activation and as

surrogates for vaccine protection. Most studies have focused on

individual markers such as secreted M. tuberculosis antigens,

serological responses, microbiological indices and host inflamma-

tory markers, with mixed results [7,25]. There is growing

recognition of the advantages of using combinatorial biomarker

panels or ‘omics’-based methods to achieve sufficient levels of

accuracy [25]. However, relatively few studies have utilized such

strategies.

Proteomic fingerprinting for biomarker discovery has been

applied in the past decade to a variety of disease states, particularly

in the sphere of cancer diagnostics [26,27]. The power of this

approach is reflected by the recent granting of FDA approval of

a novel blood test derived from a SELDI-based fingerprinting

method, for distinguishing malignant from benign ovarian

tumours [27,28]. In many infectious diseases, there are clinically

important distinctions to be made between different manifestations

associated with the same underlying pathogen. For example,

distinguishing colonization or latent disease from active infection

has obvious clinical and therapeutic implications. TB is a clear

case in point. Proteomic fingerprinting has enormous potential for

defining and distinguishing these disease states but has only

recently received attention in this area [12–14,29–31]. Because the

circulation samples deep tissues throughout the body, local

proteomic changes in organs such as the lungs can be reflected

in the plasma proteome. Moreover, host modulation by the

pathogen is likely to generate changing patterns of protein

expression associated with different clinical manifestations. Thus

the plasma proteomic response is a plausible index of disease state.

Proteomic patterns are highly dynamic and it may be possible to

define those that reflect stages in progression from latency to active

disease. However, the complexity of the plasma proteome with its

enormous dynamic range of solute concentrations means that

detection of informative lower abundance proteins is particularly

challenging. It is possible that differences between active TB and

LTBI in symptomatic patients are reflected better by such lower

abundance proteins not easily detectable in crude plasma. This

may explain the higher specificity for active TB obtained from pre-

fractionated as compared to the crude plasma spectra.

The gold standards used for defining patient groups in this study

are notoriously imperfect. For example, while active TB was

defined by positive microbiology, it is possible that some patients

designated symptomatic controls may actually have had smear and

culture negative TB. This might have resulted in an underestimate

of the specificity of our diagnostic pattern for active TB, although

our 6 months follow-up and appropriate re-labelling should have

identified most of these. The lack of an adequate gold standard for

defining LTBI must also be considered. While IGRAs show

greater specificity than TSTs, sensitivity may be compromised

especially in early active TB [22]. Thus some patients with

unrecognized smear and culture negative TB may have been

mislabeled as symptomatic controls without LTBI.

We did not perform routine HIV testing in our patient cohort

and it is possible that over-representation of HIV seropositivity in

our active TB group may have had a confounding effect. We

believe this is unlikely in view of the low prevalence of HIV co-

infection among TB patients in Peru (,5%) found in previous

studies [17]. Important areas of future study will be to establish the

applicability of this approach in the contexts of TB-HIV co-

infection and smear-negative TB.

Our present findings confirm the utility of defining the host

proteomic response in distinguishing clinically overlapping patient

Table 3. Number of mass/charge (m/z) clusters derived from crude and pre-fractionated plasma.

Crude Plasma Pre-fractionated Plasma

F1 F2 F3 F4 F5 F6

ActiveTB vs. All Symptomatic Controls 271 (98) 102 (10) 72 (8) 93 (4) 85 (8) 75 (12) 96 (12)

ActiveTB vs. Symptomatic LATENT Controls 271 (33) 102 (0) 72 (0) 93 (0) 85 (0) 75 (4) 96 (0)

ActiveTB vs. Symptomatic NOLATENT Controls 271 (57) 102 (16) 72 (0) 93 (8) 85 (0) 75 (8) 96 (5)

Total number of mass/charge (m/z) clusters obtained from SELDI-ToF profiling of crude and pre-fractionated plasma. In brackets number of relevant discriminatory m/z
clusters selected by the RFE algorithm. F1 = fraction 1 at pH 9; F2 = fraction 2 at pH 7; F3 = fraction 3 at pH 5; F4 = fraction 4 at pH 4; F5 = fraction 5 at pH 3; F6 = fraction
6 organic phase.
doi:10.1371/journal.pone.0038080.t003
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groups in a TB clinic setting. Moreover, this study shows that

active TB can be identified by a blood test in a population of

community TB clinic attenders, on a background of non-TB

attributable symptoms, despite the coexistence of LTBI. Ultimate-

ly, a significant impact on control of TB in high prevalence settings

will depend on the ability to translate these findings into a robust,

affordable point-of-care format. Incorporation of a panel of

biomarkers derived from this study into a lateral flow device or

similar platform is the logical next step. Finally, the utility of

defining proteomic patterns in TB may extend beyond diagnostics

to provide new methods for monitoring treatment response and

disease stage.
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