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Background. Unlike other respiratory infections, tuberculosis diagnoses increase in summer. We performed an
ecological analysis of this paradoxical seasonality in a Peruvian shantytown over 4 years.

Methods. Tuberculosis symptom-onset and diagnosis dates were recorded for 852 patients. Their tuberculosis-
exposed cohabitants were tested for tuberculosis infection with the tuberculin skin test (n = 1389) and QuantiFERON
assay (n=>576) and vitamin D concentrations (n = 195) quantified from randomly selected cohabitants. Crowding
was calculated for all tuberculosis-affected households and daily sunlight records obtained.

Results.  Fifty-seven percent of vitamin D measurements revealed deficiency (<50 nmol/L). Risk of deficiency
was increased 2.0-fold by female sex (P <.001) and 1.4-fold by winter (P <.05). During the weeks following peak
crowding and trough sunlight, there was a midwinter peak in vitamin D deficiency (P < .02). Peak vitamin D defi-
ciency was followed 6 weeks later by a late-winter peak in tuberculin skin test positivity and 12 weeks after that by an
early-summer peak in QuantiFERON positivity (both P < .04). Twelve weeks after peak QuantiFERON positivity,
there was a midsummer peak in tuberculosis symptom onset (P <.05) followed after 3 weeks by a late-summer
peak in tuberculosis diagnoses (P < .001).

Conclusions. The intervals from midwinter peak crowding and trough sunlight to sequential peaks in vitamin D
deficiency, tuberculosis infection, symptom onset, and diagnosis may explain the enigmatic late-summer peak in
tuberculosis.
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Although the incidence of certain infectious diseases is
seasonal [1], the seasonality of tuberculosis is incom-
pletely understood.
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Tuberculosis infects approximately a third of the
world’s population, causing symptomatic disease in
8.7 million people annually [2]. Prior to antibiotics,
spring peaks were noted in tuberculosis illness [3].
Later studies in the antibiotic era from Cameroon [4],
India [5], Britain [6], Kuwait [7], Spain [8], America
[9], Japan [10], and South Africa [11, 12] also revealed
tuberculosis seasonality. Contrary to recognized pat-
terns of acute respiratory illnesses [13], most studies re-
port a nadir of new tuberculosis cases during winter and
a peak in spring and summer. This seasonal variation is
presumed to relate more to recent transmission than tu-
berculosis reactivation [12, 14]. However, interpretation
of seasonality studies is complicated by heterogeneity in
definition of season and seasonal variables studied (ie,
temperature, rainfall) [4,7, 11].
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Vitamin D is an important determinant of adaptive and in-
nate immunity. The principal active metabolite of vitamin D,
25-hydroxy-vitamin D (hereafter referred to as “vitamin D”),
has immunosuppressive effects on T-helper and dendritic
cells but, conversely, an immunostimulatory effect on mono-
cytes and macrophages [15-17]. Low vitamin D concentrations
contribute to an increased risk of tuberculosis contacts” tuber-
culin skin test (TST) converting to positive [18] and a higher
likelihood of active tuberculosis disease in people with specific
vitamin D receptor polymorphisms [19]. Apart from diet, hu-
mans derive a proportion of their vitamin D through synthesis
from 7-dehydrocholesterol on exposure of skin to sunlight [20].
Historically, both ultraviolet light and vitamin D supplementa-
tion were used in the treatment of pulmonary and cutaneous
tuberculosis [21]. More recently, vitamin D supplementation
during tuberculosis treatment was investigated but did not im-
prove treatment outcome [22, 23]. This tuberculosis and vita-
min D interaction has stimulated interest in seasonal variation
in vitamin D concentrations as a potential risk factor for tuber-
culosis susceptibility [11, 14, 22-25].

Poverty and social determinants are associated with tubercu-
losis infection and disease [26-28]. In diverse settings, house-
hold crowding (hereafter referred to as “crowding”) is
associated with poverty, tuberculosis infection, and tuberculosis
disease in household contacts [29-32].

Understanding tuberculosis seasonality and its potential as-
sociations with both endogenous and exogenous factors, includ-
ing vitamin D and crowding, may inform the health effects of
climate change and influence tuberculosis prevention through
interventions to reduce crowding and vitamin D deficiency.
We therefore studied the seasonal relationship between putative
tuberculosis risk factors (crowding, hours without sunlight, and
vitamin D concentrations), tuberculosis infection (measured by
TST and interferon-y release assays [IGRAs]), and subsequent
tuberculosis illness (symptom onset and disease) within an im-
poverished community in northern Lima, Peru.

METHODS

Design Overview

This was an ecological analysis of seasonality conducted during
a cohort study investigating risk factors for incident tuberculosis
amongst household contacts of tuberculosis patients [27]. An
ongoing nested trial of micronutrient supplementation is as-
sessing whether micronutrient supplementation prevents tuber-
culosis, but all data reported here involved participants who
declared they had not taken micronutrient supplements.

For the current research, the tuberculosis patients had their
date of symptom onset and diagnosis recorded and their
tuberculosis-exposed cohabitants were tested for tuberculosis
infection and vitamin D deficiency while sunlight levels were
recorded.

Setting and Climate Data
The study took place over 4 years from 1 January 2003 until 31
December 2006 in Ventanilla, a periurban shantytown with
high rates of tuberculosis disease (162/100 000/year) and poverty,
but low rates (<2%) of HIV-tuberculosis coinfection [27].
Hours without direct sunlight were studied because we hy-
pothesized that these would be associated with vitamin D defi-
ciency. The Peruvian Ministry for Environment (SENAMHI)
provided data defining the presence or absence of direct sun-
light in the area over the 32 640 consecutive hours of the
study period. Direct sunlight was present during daylight
hours when cloud cover was minimal or absent. Conversely, di-
rect sunlight was absent during hours of darkness or when
cloud cover prevented the measuring apparatus from directly
receiving sunlight. Lima has 2 main seasons: we defined winter
as the 6 consecutive months with fewest hours of direct sunlight.
Summer was defined as the rest of the year.

Participants
Inclusion criteria were adult tuberculosis patients with laboratory-
proven (sputum smear or culture positive) pulmonary tubercu-
losis and their adult tuberculosis-exposed household cohabitants.
Adults in this setting were defined as aged 16 years or older.
Tuberculosis-exposed cohabitants were individuals who reported
being in the same house as these tuberculosis patients for over 2
hours per day at least 3 times per week. Exclusion criteria were
declining/inability to give informed written consent (Figure 1).
The national tuberculosis program registered 1058 patients
with pulmonary tuberculosis during the study period. We locat-
ed 99%, and 93% (n = 852) of those who met our inclusion cri-
teria (n = 912) consented to participate. We concurrently aimed
to recruit all tuberculosis-exposed cohabitants of these patients,
and 73% (n =2,004) of those who met our inclusion criteria
(n=2737) consented to participate. Thus, 3589 members of
tuberculosis-affected households were recruited. The interna-
tionally accredited ethics committee of the Universidad Peruana
Cayetano Heredia approved the project.

Procedures
At enrolment, a questionnaire was completed with all partici-
pants to record baseline data (Table 1). For tuberculosis pa-
tients, this questionnaire included information defining the
date of symptom onset (see Table 2) and the date of diagnosis.

For all participants, height and weight were measured and
body mass index (BMI) was calculated. Socioeconomic position
was measured using a composite household poverty index in-
corporating 13 variables, including education, housing, services,
and assets [27]. Crowding was measured by number of people
per room, calculated as the number of people sleeping in the
house divided by the total number of rooms in the house.

At enrollment, all tuberculosis-exposed cohabitants were
asked to undergo testing for latent tuberculosis with TST as

Tuberculosis, Sunlight, Crowding, and Vitamin D Seasonality e JID 2014:210 (1 September) ¢ 775

gzoz aunr Q| uo isenb Aq 80G8062/172./S/01.2/3191LE/pIl/Wwod dno-olwapede//:sdiy Woly papeojumoq



Adults with a
diagnosis of proven
tuberculosis

n=1058
206not ..
recruited
A 4
All tuberculosis-
Study population exposed
with tuberculosis [= = 3 .41t cohabitants
n=852 n=2737
T — o d
nothave <7
5T h 4
completed
TST result
n=1389
548 recruited
261 0000 s »prior to IGRA
declined «..............
. ,4 failed
Y tests
IGRA result
n=576
1
|
1
v
Random subset
n=102
Vitamin D blood
samples
n=195
1 )

I

Hours without direct sunlight recorded for study site

Figure 1.  Study design. Abbreviations: IGRA, interferon-y release assay;
TST, tuberculin skin test.

described [33]. From 7 March 2005 to 9 November 2006, addi-
tional resources became available that allowed all consecutive
recruited tuberculosis-exposed cohabitants who agreed to pro-
vide a blood sample to also undergo IGRA using the Quanti-
FERON Tuberculosis-Gold assay (Cellestis). From this date,
68% (n =576) of cohabitants agreed to provide a blood sample
and had interpretable IGRA results. As recommended by the
manufacturer, IGRA results were reported qualitatively as pos-
itive, negative, or indeterminate, not quantitatively.

Vitamin D Concentrations

Of the tuberculosis-exposed cohabitants enrolled in the micronu-
trient supplementation trial who had TST and IGRA results, a
subset (n=102) selected using random-number tables provided

Table 1. Study Population Baseline Data

Tuberculosis-Exposed Tuberculosis

Cohabitants Patients
Randomly
Selected
Individuals for
Plasma Vitamin
All D Measurement All
Number of 1389 102 852
participants
Number of blood N/A 195 N/A
vitamin D
analyses
Demographics
Sex, % males 37 (34-39) 31 (25-38) 60 (56-63)
(95% Cl)
Age, mean years 34 (33-34) 34 (32-36) 31 (30-32)
(95% Cl)
Socioeconomic
factors
Any postprimary 75 (73-78) 72 (65-78) 81 (78-84)
education, %
(95% ClI)
Household 57 (565-60) 69 (64-74) NA
crowding, %
(95% Cl) above
median people
(>2) per room?
Household 50 (47-53) 63 (57-68) NA
poverty score,
% (95% Cl)
above median
score®
Anthropometry
Overweight, % 48 (45-50) 46 (40-52) 12 (10-14)

(95% Cl) above
median BMI
(>25 kg/m?)°

Abbreviations: BMI, body mass index; Cl, confidence interval, NA, not
applicable (because these variables were assessed at the household rather
than individual level).

2 A continuous measure of crowding was calculated by people sleeping in the
house divided by number of rooms in the house. The median of this continuous
crowding variable was exactly 2 people per room. The variable “household
crowding” refers to the percentage of household’s containing more people
per room than the cohort median (2). When splitting into above and below
this median, “2" cannot be split and therefore those houses with exactly 2
people per room were apportioned to the “crowded” (ie, above the median)
households. This results in 57% of cohort households being above the
cohort median people per room and thus crowded.

® The variable household poverty score refers to the percentage of households
with a poverty score above the household median.

° The variable “overweight” refers to the percentage of individuals whose BMI
was above the median BMI of the entire cohort of tuberculosis-exposed
cohabitants and patients, and is the same as that defined by the World
Health Organization (>25 kg/m?).

blood samples at recruitment. These tuberculosis-exposed co-
habitants stated that they were not taking micronutrient supple-
ments. Those tuberculosis-exposed cohabitants who did not
receive micronutrient supplements also provided blood samples
1 (n=48) and 6 months (n =45) postrecruitment. Therefore, a
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Table 2. Seasonality of Tuberculosis Risk Factors, Tuberculosis Infection, and Tuberculosis Disease

Peak Season and Dates 6-mo Proportions

Season Season P
Start Date Peak Date End Date Peak Season Rest of Year Value
Tuberculosis risk factors
Household crowding, % (n/N) 8 Apr 8 Jul 7 Oct 58.9% (206/350) 46.2% (171/370) <.001
[95% Cl] (midwinter) [63.7-64.0] [41.1-51.3]
Hours without direct sunlight, 20 May 18 Aug 18 Nov  92.7% (15622/16848) 74.4% (11746/15792) <.001
% (n/N) [95% Cl] (midwinter) [92.3-93.2] [73.7-75.1]
Vitamin D deficient (<50 nmol/L), 24 May 23 Aug 22 Nov  66.7% (58/87) 49.1% (53/108) .01
% (n/N) [95% Cl] (midwinter) [56.8-76.6] [39.6-58.5]
Tuberculosis infection
TST positivity, % (n/N) 8 Jul 7 Oct 6 Jan 62.5% (388/621) 54.7% (420/768) .003
[95% Cl] (late winter) [68.7-66.3] [61.2-58.2]
IGRA positivity, % (n/N) 4 Oct 3 Jan 4 Apr 59.1% (166/281) 50.5% (149/295) <.04
[95% Cl] (early summer) [63.3-64.8] [44.8-56.2]
Tuberculosis disease
Tuberculosis symptom onset 1 Dec 2 Mar 1 Jun 0.14% (416/307 623) 0.12% (361/307 623) <.05
incidence, % (n/N) [95% CIJ® (midsummer) [.12-.15] [.11-13]
Tuberculosis diagnosis incidence, 24 Dec 24 Mar 23 Jun 0.15% (466/307 623) 0.13% (390/307 623) <.01
% (n/N) [95% CI° (late summer) [.14-17] [.11-.14]

The peak seasons for the tuberculosis risk factors, tuberculosis infection, and tuberculosis disease and the proportion occurring during the peak season versus the
rest of the year is shown.®

Abbreviation: Cl, confidence interval.

@ Tuberculosis symptom onset was calculated using longest duration of symptoms, including cough (with or without phlegm or blood), weight loss, fever, and night
sweats. More general symptoms (eg, headache and nausea) were not included in symptom-onset calculations. Incidence is shown as the total number of people
with onset of symptoms that were subsequently diagnosed to be caused by laboratory-proven pulmonary tuberculosis over four 6-month periods as a percentage of
the total population of the study site estimated in a national census during the study period.

®Incidence is shown as the total number of people diagnosed with laboratory-proven pulmonary tuberculosis over four 6-month periods as a percentage of the total
population of the study site estimated in a national census during the study period.

° These observed 6 monthly actual count data differ slightly from the 6-month moving average data shown in Figure 2 because of differences in the way these data

are calculated.

total of 195 (102 + 48 + 45) blood samples were taken. Vitamin D
concentrations were measured by radio-immunoassay using in-
ductively coupled mass spectrometry. Plasma concentrations of
<50 nmol/L vitamin D were considered to be deficient and >50
nmol/L replete [22].

Statistical Analysis

Raw data and 6-month moving averages (a series of averages of
time-series data subsets used to highlight longer-term trends/
cycles) were analyzed to examine seasonal variation and divided
into “peak” season (3 months prior to and after the peak value
for that variable) and “the rest of the year” (the remaining 6
months). Power calculations for sample size were not per-
formed. Continuous data with a Gaussian distribution were
summarized as means with their 95% confidence intervals
(CIs) and compared by Student ¢ test. Continuous data with a
non-Gaussian distribution were converted to categorical data
above or below the median value (for crowding 2 people/
room and for poverty arbitrary units were used), summarized
as proportions with their 95% Cls and compared with the

Z test of proportions. For multiple regression analyses,
noncontributory variables were removed in a backwards-
stepwise manner according to the likelihood-ratio test. Relative
risks (RRs) were calculated using generalized linear model
and binomial analysis. The regression model was repeated
using season as both a categorical variable (summer versus
winter) and as a continuous variable (days from trough hours
of direct sunlight). Tuberculosis incidence was calculated
using the population of Ventanilla of 307 623 people esti-
mated by national census during the study period. All P values
were 2-sided, and analyses, including calculation of population-
attributable fractions (PAFs), used the Stata program
(version 12).

RESULTS

Study Population

The study population is summarized in Table 1. Among partic-
ipants, tuberculosis-exposed cohabitants were older, had lower
education level, were more often female, and were more likely to
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Figure 2. Vitamin D status for the entire study population (n=195) by
sex and season. A, Vitamin D plasma concentration. B, Vitamin D concen-
tration replete (ie, 250HD concentrations >50 nmol/L). Bars represent 95%
confidence intervals. Abbreviation: 250HD, calcifediol.

be overweight than tuberculosis patients (all P < .05). There was
a median household average of 2.0 (interquartile range [IQR],
1.5-3.0) people per room.

Vitamin D

Figure 2A shows the average vitamin D concentrations and Fig-
ure 2B the proportion of vitamin D replete samples, both ana-
lyzed by season and sex. The mean vitamin D concentration was
48.6 nmol/L (95% CI, 46.9-50.3).

The proportion of samples that were vitamin D replete (>50
nmol/L) was 43.1% (95% CI, 36.1-50.1). During summer, the
average vitamin D concentration was 51.0 nmol/L and signifi-
cantly higher than during the winter (45.8 nmol/L; P <.003,
Figure 2A). Male sex and summer were significantly associated
with greater likelihood of being vitamin D replete (Figure 2B).

The randomly selected subgroup of tuberculosis-exposed co-
habitants who had vitamin D assays were more likely to be poor
(P=.0006) and have more crowding (P < .003) than the entire
cohort of tuberculosis-exposed cohabitants. However, neither
poverty nor crowding were associated with vitamin D concen-
trations or being vitamin D replete (all P> .1, Table 3). There

were no other differences between this subgroup and the
other tuberculosis-exposed cohabitants.

Seasonal Association of Crowding, Sunlight, Vitamin D
Deficiency, and Tuberculosis

Figure 3 demonstrates the seasonality of tuberculosis risk fac-
tors, infection, and illness: the midwinter peak in putative tu-
berculosis risk factors (crowding, hours without direct
sunlight, and vitamin D deficiency), the sequential late-winter
(TST) and early-summer (IGRA) peak in tuberculosis infection,
and finally the midsummer peak in tuberculosis symptom onset
followed after 3 weeks by subsequent tuberculosis diagnosis.
Table 2 shows the analysis by season of crowding, hours without
direct sunlight, vitamin D deficiency, tuberculosis infection, and
illness.

Tuberculosis Risk Factors

Crowding

The peak in proportion of households with crowding occurred
in midwinter in July prior to both the peak in hours without
direct sunlight and vitamin D deficiency (Figure 3). During
the 6 months with most crowding, the proportion of crowded
households was 13% points higher than the rest of the year
(P < .001, Table 2).

Hours Without Direct Sunlight

The peak in proportion of hours without direct sunlight oc-
curred in August, midwinter, as can be seen in Figure 3. The
proportion of hours without direct sunlight was 19% points
higher in winter than summer (P < .001, Table 2).

Vitamin D Deficiency

Vitamin D deficiency was detected in 56.9% (111/195) of sam-
ples (Table 2). Figure 3 demonstrates that the peak proportion
of samples with vitamin D deficiency occurred in midwinter in
the week following the peak in hours without direct sunlight.
During the 6 months around this peak, the proportion of sam-
ples that were vitamin D deficient was 17% points higher than
the rest of the year (P=.01, Table 2).

Tuberculosis Infection in Tuberculosis-Exposed Cohabitants
ST

Six weeks following the peak in vitamin D deficiency, the peak
in the proportion of positive TST results occurred in late winter
(Figure 3). During the 6 months around this peak, the propor-
tion of positive TST results was 8% points higher than the rest of
the year (P =.003, Table 2).

IGRA

The peak in the proportion of positive IGRA tests occurred in
early summer, 12 weeks following the peak in proportion of
positive TST results. During the 6 months around the IGRA
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Table 3. Regression Analysis of Associations With Vitamin D Levels

Vitamin D 250HD Plasma Concentrations (nmol/L),

Linear Regression Vitamin D Replete (>50 nmol/L), Binomial Regression

Univariate Regression Multiple Regression Univariate Regression Multiple Regression

Coefficient P Coefficient P Relative Risk P Adjusted Relative Risk P
(95% Cl) Value (95% CI) Value (95% Cl) Value PAF (95% CI)  Value
Sex (male) 9.3 (4.4-14) <.001 9.3(5.8-13) <.001 2.00(1.4-2.9) <.001 24(9-36) 2.0(1.4-2.8) <.001
Season (summer)? 5.2 (2.2-8.3) .001 5.3(2.0-8.5) <.001 1.4 (1.0-2.0) .03 19(1-33) 1.4(1.0-1.9) <.05
Age; years 0.11 (-.088-.30) 2 C S 1.0 (.99-1.0) 3
Any postprimary education 2.0 (-2.8-6.8) . 1.3(.83-2.2) 2
Household crowding, -1.2 (-6.2-3.9) .6 1.0 (.68-1.6)
above median people
per room
Household poverty score,  —1.006 (-5.7-3.7) .6 0.78 (.53-1.2) 2
above median score
Overweight, above median 3.1 (-1.9-8.1) 2 1.1 (.73-1.6) 7

BMI (>25 kg/m?)P

This table shows the results of linear regression of vitamin D plasma concentrations in nmol/L as the outcome variable and binomial regression with odds of being
vitamin D replete (=50 nmol/L) as the outcome variable.

All analyses presented above were clustered by individual because some individuals had more than 1 blood sample taken. Specifically, 102 tuberculosis-exposed
cohabitants provided blood samples at recruitment, and 48 and 45 of these individuals provided blood samples again at 1 and 6 months postrecruitment,
respectively. Therefore, a total of 195 blood samples were taken. Blank cells indicate variables that did not meet the criteria for inclusion in the multiple
regression analysis.

Abbreviations: 250HD, calcifediol; adjusted PAF, population-attributable fraction derived from multiple logistic regression using the “aflogit” function of STATA; BMI,
body mass index; Cl, confidence interval.

? In addition to the analysis of season shown, when univariate and multiple linear regression analyses were repeated using “days from trough in hours of direct
sunlight” as a continuous variable in place of “season,” male sex and days from trough in hours of direct sunlight remained associated with greater likelihood of

being vitamin D replete or having higher vitamin D concentrations.
b BMI indicates weight in kilograms divided by height in meters squared.

peak, the proportion of positive IGRA tests was 9% points high-
er than the rest of the year (P < .04, Table 2).

Tuberculosis Disease in Laboratory-Proven Tuberculosis
Patients

Tuberculosis Symptom Onset

Five months after the peak in tuberculosis infections as indicat-
ed by TST, the peak in tuberculosis symptom onset occurred in
midsummer (Figure 3). During the 6 months around this date,
14% more patients had tuberculosis symptom onset than the
rest of the year (P < .05, Table 2).

Tuberculosis Diagnosis

The peak in tuberculosis diagnosis occurred in late summer,
3 weeks following the peak in tuberculosis symptom onset (Fig-
ure 3). During the 6 months around this date, 13% more pa-
tients were diagnosed with tuberculosis than the rest of the
year (P < .01, Table 2).

Regression Analyses

Table 3 shows the multiple regression analysis of the association
between vitamin D concentrations (and the likelihood of being
vitamin D replete) and the characteristics of the study

population. Male sex (RR 2.0, PAF 24%; P < .001) and summer
(RR 1.4, PAF 19%; P < .05) were associated with greater likeli-
hood of being vitamin D replete (ie, lower likelihood of defi-
ciency). To assess the robustness of these findings, additional
analyses of vitamin D concentrations (instead of being vitamin
D replete) were performed and showed the same pattern of sig-
nificance (Table 3; Figure 2).

DISCUSSION

Vitamin D deficiency was common in this high-risk group of
tuberculosis-exposed people, more common in females, and
peaked in midwinter, shortly after peak crowding and hours
without direct sunlight. This was followed by a peak in tubercu-
losis infections in late winter and, after the known 5-month
median tuberculosis incubation period [34], by a peak in tuber-
culosis symptoms in midsummer. Finally, after the 3-week in-
terval required for tuberculosis case finding in this setting [35],
tuberculosis diagnoses subsequently peaked in late summer.
These findings suggest that seasonal vitamin D deficiency and
crowding may explain the previously enigmatic interval from
the midwinter peak in tuberculosis risk factors until the late-
summer peak in tuberculosis diagnoses.
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counts shown in Table 2, owing to the latter being raw data. In the “tuberculosis risk factors” section, hours without sunlight is represented by the thin
continuous black trend line, vitamin D deficiency by the dashed black line, and crowding by the thick continuous black trend line. The numbers stated for the
incidence of tuberculosis symptom onset and tuberculosis diagnoses are the 6-month moving average data corresponding to those in Table 2. Abbreviations:

IGRA, interferon-y release assay; TST, tuberculin skin test.

Vitamin D deficiency was found in over half of this Peruvian
cohort of tuberculosis-exposed cohabitants. Deficiency associat-
ed closely with hours without direct sunlight as reported in tem-
perate climates in Europe [36] and North America [37].
Defining vitamin D deficiency is controversial [20]. We selected
the threshold of vitamin D concentrations <50 nmol/L, as re-
cently suggested in international guidance and relevant studies
[22, 38]. While such a threshold may be suitable at a population
level to predict diseases like osteomalacia, it may fail to detect
significant linear associations between vitamin D concentra-
tions and nonskeletal disease risk (such as type-2 diabetes, is-
chemic heart disease, or cancer) [39]. Therefore, we examined
vitamin D as both a categorical and linear-dependent variable,
and found the results to be concordant.

Female sex was associated with greater likelihood of vitamin D
deficiency, independent of season. This is important because

international vitamin D supplementation guidelines do not gen-
erally differentiate between gender, apart from pregnancy or lac-
tation. The predominance of vitamin D deficiency in females in
our study may relate to genetic predisposition or diet. However,
the most likely explanation may be difference in behavior because
in this setting, men spend more time outside working [40].
Vitamin D deficiency is a biologically plausible risk factor for
tuberculosis infection and disease because it suppresses im-
mune responses specific to tuberculosis infection [17] and has
been epidemiologically associated with tuberculosis disease
[11, 24]. The active metabolite of vitamin D (1,25-dihydroxyvi-
tamin D) upregulates the cellular vitamin D receptor to inhibit
mycobacterial growth [41] and increases cathelicidin expression
by macrophages, which promotes mycobacterial cell death [15-
17]. Therefore, increasing vitamin D concentrations in spring
may potentially lead to a “seasonal immune reconstitution”
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with increased granuloma formation, tissue inflammation, and
corresponding symptoms in people subsequently diagnosed
with tuberculosis in summer. Moreover, although current in
vivo evidence suggests no effect [22, 23], there is some in vitro
evidence that vitamin D supplements may improve the treat-
ment response of patients with tuberculosis disease [24].
Work in a similar Peruvian population has demonstrated that
vitamin D receptor polymorphisms were associated with tuber-
culosis patients’” time to sputum culture conversion [42]. Thus,
vitamin D deficiency, immunology, and genetic factors imply a
role in tuberculosis susceptibility.

The temporal association we observed between peak crowd-
ing and vitamin D deficiency followed by tuberculosis infection
as indicated by the peak in TST positivity extends previous TST
conversion findings in tuberculosis-exposed cohabitants in
Spain [18]. The 12-week interval we observed from peak TST
positivity until the peak IGRA positivity may be explained by
differences in time to conversion between these tests: the opti-
mum timing of IGRA testing remains to be defined [43] and in
tuberculosis outbreaks, IGRA conversion occurred 3 [44] to
6 months [45] after exposure, often later than TST conversion
[46]. Moreover, serial IGRA analysis has shown high rates of
both initial conversion and subsequent reversion in healthcare
workers without known tuberculosis exposure, complicating
interpretation [47]. However, our study did not measure TST
or IGRA conversion but the proportion of positive tests at dif-
ferent cross-sectional time points. A final possible explanation
for the difference between IGRA and TST is that their accuracy
for tuberculosis infection may be influenced by vitamin D con-
centrations: work in the study setting has shown that other mi-
cronutrients affect TST sensitivity [48]. Thus, the temporal
discrepancy we found between seasonal proportion of positive
IGRA and TST tests is novel and the mechanisms behind such a
discrepancy require further exploratory research.

The seasonality of winter vitamin D deficiency and summer
tuberculosis diagnoses that we characterized in tuberculosis-
exposed cohabitants extends findings in tuberculosis patients in
Europe [19] and South Africa [11]. Low vitamin D concentra-
tions and more vitamin D deficiency in midwinter may have led
to increased host-susceptibility to tuberculosis infection seen in
late winter and to the subsequent progression to tuberculosis
disease, after a 5-month incubation period. This 5-month incu-
bation period is the same as that found in a study that used
DNA fingerprinting to accurately identify progression from
household tuberculosis exposure to tuberculosis infection and
disease [34]. Although our findings are relevant to both, we
were unable to determine which episodes of tuberculosis disease
were a result of recent tuberculosis infection versus reactivation
of latent tuberculosis. However, other recent studies showed
that tuberculosis seasonal variation was more pronounced in
children and clustered cases, suggesting recent infection as the
more likely explanation [14].

The interaction of social determinants along the causal path-
way from tuberculosis exposure to infection and disease is com-
plex and likely relates to increased transmission (greater
exposure through crowding, increased time spent indoors,
and poorer ventilation [29]), susceptibility (poorer nutrition,
lower immunity), and marginalization (health-seeking behavior,
education). Our study measured crowding, potential tuberculo-
sis exposure that in winter may contribute to the seasonality we
observed. Crowding is a known marker of poverty and both
crowding and poverty are independently associated with tuber-
culosis [29, 30]. However, crowding is complex, poorly defined,
and specific to geographical settings [31]. Research in high-
resource countries has defined crowding as >1 person/room
and severe crowding as >1.5 people/room [32], which would
have classified virtually all of our households as crowded, pre-
venting meaningful analysis. The World Health Organization
suggests that measuring floor space [31] can be problematic
and that it may be more appropriate to consider crowding as
above the midpoint number of persons/room. We used this a
priori definition as a locally appropriate crowding definition
in this current research and also in ventilation research that is
being published separately. Our finding of more crowding in
winter than summer is novel. The reasons behind this crowding
seasonality require further investigation and may include eco-
nomic migration (seasonal employment), schooling, public hol-
idays, and selling food produce after harvests. As noted in
another recent study [49], it is unlikely that crowding and in-
creased transmission in winter alone is the factor responsible
for tuberculosis seasonality. Our findings suggest that both
crowding and vitamin D deficiency are independently associated
with tuberculosis seasonality.

Temporal associations cannot prove causation, and other
confounding factors may have contributed to tuberculosis sea-
sonality. For example, diet was not examined in our study.
However, there is little variation in foodstuff availability and
consumption in Ventanilla, and BMI was used as a proxy nutri-
tion indicator. Climate-related confounding factors could in-
clude temperature [13], humidity, rain, and climate change.
Despite high humidity year round, annual rainfall in Lima is
very low (10-30 mm) and there is minimal variation in temper-
ature (average 14°C in winter and 20°C in summer). An impor-
tant confounder not measured in the present study was seasonal
variation in healthcare seeking and access. Healthcare-seeking
behavior may vary with work-market, harvest, or school season,
as may provision of medical care at health posts and hospitals.
Such variations may extend to the number of people tested for
tuberculosis. Other confounding factors include: concomitant
respiratory-tract infections, smoke inhalation, and air quality.
With regard to vitamin D concentrations, the inductively cou-
pled mass spectrometry assay we used is now recognized to be
prone to interlaboratory variations, and isotope-dilution liquid
chromatography tandem mass spectrometry may be preferable
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[50] but was not widely available during our study. In addition
to this ecological analysis, it would be valuable to perform larger
future studies to test for associations between baseline vitamin
D concentrations in tuberculosis-exposed household contacts
and subsequent progression to tuberculosis disease, although
such a study would be confounded by the seasonality of vitamin
D concentrations that we report here. Vitamin D concentrations
were measured in a random subset of tuberculosis-exposed co-
habitants who happened to be poorer and live in more crowded
households than all tuberculosis-exposed cohabitants. This
chance occurrence does not appear to have been important be-
cause multiple regression demonstrated that neither crowding
nor poverty were independently associated with vitamin D con-
centrations or being vitamin D replete.

In conclusion, the sequential peaks in midwinter crowding,
vitamin D deficiency, tuberculosis infection, tuberculosis symp-
tom onset, and finally late-summer tuberculosis diagnoses po-
tentially explain the previously enigmatic seasonality of
tuberculosis. These findings suggest that climate change and
recommendations to reduce the risk of skin cancer by avoiding
sun exposure may influence tuberculosis susceptibility. The as-
sociations that we have identified between season, crowding, vi-
tamin D, and tuberculosis emphasize the potential for
correcting vitamin D deficiency and mitigating poverty to con-
tribute to tuberculosis prevention.
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